This report documents and presents the results of a study to determine the feasibility of applying Artificial Intelligence (AI) techniques to the diagnosis of transit railcars. The AI techniques investigated were expert systems, case-based reasoning, model-based reasoning, artificial neural networks, computer vision, fuzzy logic, and a procedural knowledge-based system. Site surveys were conducted at transit railcar maintenance facilities and at railcar subsystem suppliers. The site surveys gathered information about current and future diagnostic and maintenance practices, possible barriers to implementing advanced AI technology, and maintenance cost data. An economic analysis was performed to provide an estimate of cost savings expected by reducing the diagnostic effort.Faults are either identified directly by the test set or with the additional use of schematics, wiring diagrams, and manuals. 3. Back Shop. Component schematics, electronic test equipment, and operating manuals are used to diagnose PCB-levelanbsp;...
Title | : | Artificial Intelligence for Transit Railcar Diagnostics |
Author | : | Ian P. Mulholland, Raymond A. Oren |
Publisher | : | Transportation Research Board - 1994 |
You must register with us as either a Registered User before you can Download this Book. You'll be greeted by a simple sign-up page.
Once you have finished the sign-up process, you will be redirected to your download Book page.
How it works: